Energy dissipation in a shear layer with suction*

نویسندگان

  • Charles R. Doering
  • Edward A. Spiegel
  • Rodney A. Worthing
چکیده

The rate of viscous energy dissipation in a shear layer of incompressible Newtonian fluid with injection and suction is studied by means of exact solutions, nonlinear and linearized stability theory, and rigorous upper bounds. The injection and suction rates are maintained constant and equal and this leads to solutions with constant throughput. For strong enough suction, expressed in terms of the entry angle between the injection velocity and the boundaries, a steady laminar flow is nonlinearly stable for all Reynolds numbers. For a narrow range of small but nonzero angles, the laminar flow is linearly unstable at high Reynolds numbers. The upper bound on the energy dissipation rate—valid even for turbulent solutions of the Navier–Stokes equations—scales with viscosity in the same way as the laminar dissipation in the vanishing viscosity limit. For both the laminar and turbulent flows, the energy dissipation rate becomes independent of the viscosity for high Reynolds numbers. Hence the laminar energy dissipation rate and the largest possible turbulent energy dissipation rate for flows in this geometry differ by only a prefactor that depends only on the angle of entry. © 2000 American Institute of Physics. @S1070-6631~00!02108-5#

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Laminar and Turbulent Dissipation in Shear Flow with Suction

The rate of viscous energy dissipation in a shear layer of incompressible Newtonian fluid with injection and suction is studied by means of exact solutions, nonlinear and linearized stability theory, and rigorous upper bounds. For large enough values of the injection angle a steady laminar flow is nonlinearly stable for all Reynolds numbers, while for small but nonzero angles the laminar flow i...

متن کامل

The Correlation between the CBR and Shear Strength in Unsaturated Soil Conditions

 In pavement design, the CBR and direct shear tests are two very common laboratory investigations for predicting the strength of a subgrade layer. The relationship between the CBR and water content has been commonly presented in analyses, with the result of the direct shear being expressed from the aspect of effective cohesion and the internal friction angle. Even though most natural soil is in...

متن کامل

Numerical Solution for Heave of Expansive Soils

A numerical solution for heave prediction is developed within the context theories for both saturated and unsaturated soil behaviors. Basically, lowering the potential level of compressing on a saturated layer will cause heaving due to water absorption. This water absorption is in an opposite way, similar to water dissipation as what happens during unloading in consolidation process. However, i...

متن کامل

Steel Plate Characteristic Effecting on Composite Coupled Beam at Concrete Shear Wall

Composite couple beams are the concrete elements consisting of longitudinal bars and steel plate, therefore suitable for shear transferring in couple shear walls with arranged gates in its height. In this paper, after modeling couple beams with and without steel plates with F.E methods and calibration the models with experimental results, effects of parameters such as thickness, height, length ...

متن کامل

Effects of Non-uniform Suction, Heat Generation/Absorption and Chemical Reaction with Activation Energy on MHD Falkner-Skan Flow of Tangent Hyperbolic Nanofluid over a Stretching/Shrinking Eedge

In the present investigation, the magnetohydrodynamic Falkner-Skan flow of tangent hyperbolic nanofluids over a stretching/shrinking wedge with variable suction, internal heat generation/absorption and chemical reaction with activation energy have been scrutinized. Nanofluid model is composed of “Brownian motion’’ and “Thermophoresis’’. Transformed non-dimensional coupled non-linear equations a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000